Few things to know:

- Suggestion Box (can be anonymous)
- Lots of group and partner work/activities
- I do lots of random calling on people, so be prepared to answer.
- Try my best to grade by next class, but not always possible
- Stay after school when Mrs. Watkins stays (Tuesday/ Wednesday, with exceptions)
- Feel free to e-mail me anytime with questions (mwilmert@parkwayschools.net)

Review: Find the following probabilities

Do Now:

1. Rolling a die and getting an even number.

$$\frac{3}{6} = \frac{1}{2}$$

2. Drawing an Ace from a standard deck of cards.

$$\frac{4}{52} = \frac{1}{13}$$

3. The probability that it will rain is 30%. What is the probability it won't rain? What kind of probability is this?

70% chance will not rain & ubjective

Unit 3 Day 1: Discrete Probability Distributions

(5-1) Probability Distributions (5-2) Expected Value

Random Variable: a variable whose values are determined by chance.

RECALL:

<u>Discrete Variables</u>: Variables that can be counted. WHOLE NUMBERS

<u>Continuous Variables</u>: Decimal or fractional values

Probability Distribution-> consists of the values a random variable can assume and the corresponding probabilities of the values.

EX: Create a probability distribution for the sum of rolling two dice.

											12
Probability P(X)	1/36	1/18	1/12	1/9	5/2/0	1/6	Slad	49	1/12	1/18	1/36

Example

You are tossing three coins. Represent the probability distribution

#of tails X	0	1	2	3	
Probability P(X)	1/8	3/8	3/8	1/8	

*Think about your sample space first

I. Probability Distributions
Lets graph the previous example.

Example

Probability Distribution for # of Tails

Example

You have 5 \$1 bills, 3 \$5 bills, 6 \$10 bills, and 1 \$20 bill in your pocket.

Create a probability distribution for grabbing one bill from your pocket.

I. Probability Distributions Example

A car dealership keeps track of the # of cars

it rents and for how long. Construct a

probability distribution and Graph.

X	#of Days
0	15
1	25 { SO total
2	10

# of cars rented	0	1	2
Probability of P(X)	3/10	1/2	1/5

I. Probability Distributions *Graph*.

Example

Requirements for a probability distribution

- 1.) The sum of the probabilities of all events must equal 1
- 2.) The probability of each event must be between 0 and 1

EXPECTATION (A.K.A. EXPECTED VALUE)

The expected value of a discrete random variable of a probability distribution is the theoretical average of the variable.

NOTATION: E(X)

HOW TO FIND: Take each probability multiplied by each value and add.

Example

*When doing expected value questions. Think about how much you would actually win.

One thousand tickets are sold at \$1 each for a color TV valued at \$350. What is the expected value of the gain if a person purchases one ticket? (gain)

$$E(x) = 349(1000) + (-1)(999/1000)$$

$$= -0.65$$

$$= -80.65$$

Expected value is also used to determine if a game is fair.

- * If the expected value = 0, then the game is fair.
- *If the expected value is negative, then the game is in favor of the house.
- *If the expected value is **positive**, then the game is in favor of the player

Example

One thousand tickets are sold at \$1 each for four prizes of \$100, \$50, \$25, and \$10. What is the expected value if a person purchases 1 ticket?

$$E(x) = 99(1/1000) + 99(1/1000) + 24(1/1000) + 9(1/1000) + (-1)(996/1000)$$

$$= -0.815$$

Example

The fee for entering a dog in a dog show is \$75. The owner of the winning dog receives \$2,000. Forty dogs are entered in the show. What is the expected value for each contestant?

Example

Your mother is sending a "care package" to you in college. She insures delivery of the package by paying \$1.60 extra. If the package is lost in the mail, your mother will collect \$60. The probability that the package is lost is .001. What is the expected value of the insurance?

$$\frac{\times}{P(3)} | 1.60 | -58.40$$
 $P(3) | 0.999 | 0.001$
 $E(3) = 1.6 (0.999) + (-58.40)(0.001) = 1.54$
 $$1.54$

Assignment:

Unit Plan Day 1 HW Worksheet

Unit 4 Quiz

Monday 2/24

Unit 4 Test

Friday 3/13